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ABSTRACT. We establish sharp interior and boundary regularity estimates for
solutions to dyu — Lu = f(t,z) in I x Q, with I C R and  C R™. The operators
L we consider are infinitessimal generators of stable Lévy processes. These are
linear nonlocal operators with kernels that may be very singular.

On the one hand, we establish interior estimates, obtaining that u is C?5*t< in
2 and C'F2 in t, whenever f is C® in « and C2 in t. In the case f € L™, we
prove that u is C?*~¢ in x and C'~¢ in ¢, for any € > 0.

On the other hand, we study the boundary regularity of solutions in C*! do-
mains. We prove that for solutions u to the Dirichlet problem the quotient u/d*
is Holder continuous in space and time up to the boundary 0f), where d is the
distance to 9€). This is new even when L is the fractional Laplacian.
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1. INTRODUCTION AND RESULTS

The aim of this paper is to study the regularity of solutions to nonlocal parabolic
equations

Ou— Lu = f(t,x), (1.1)
where L is a nonlocal operator of the form
Lu(t,z) = / (u(t,z +y) +u(t,z — y) — 2u(t, x))%d% (1.2)

Key words and phrases. Regularity, nonlocal parabolic equations, stable operators.
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with s € (0,1). Here, a € L'(S"™1) is any nonnegative even function.
In fact, in order to allow the kernel of L to be a singular measure we will be
dealing with operators of the form

Lu(t, z) = /S /_ " (ult x4 0r) 4wtz — Or) — 2ult, x))“nﬁ%duw), (1.3)

with the ellipticity conditions given by

0<A< inf / lv - 01*du(9), / dp < A < o0 (1.4)
Sn—1 Sn—1

vesn—1

for some constants 0 < A < A < oco. That is, we only require that the measure p,
called the spectral measure, is finite and cannot be supported in any proper subspace
of R™. When p is absolutely continuous, then du(0) = a(6)d6 for a € L'(S™ 1), and
we recover the expression (|1.2]).

General operators of the form arise as the infinitessimal generators of stable
Lévy processes. These processes have been widely studied in both Probability and
Analysis, and appear naturally in Mathematical Finance, Biology and Physics; see
the introduction of [RS14b] and references therein.

Important examples of stable operators to have in mind are the fractional Lapla-
cian, L = —(—A)*,

dy
Lu(a) = s [ (000 1)+ 0l = 9) = 20(0))
and the generator of n independent 1-dimensional symmetric stable Lévy processes,
— L= (_axlm)s +ot (_amnxn)s‘ (1-5)

In this case, the measure p is a sum of 2n delta functions on the sphere. These two
examples show the different degrees of regularity considered, from the very regular
kernel in the fractional Laplacian (1 = 1), to the singular kernel given by the Dirac
delta functions.

We will use parabolic Hélder seminorms. Given Q2 C R", I C R and «, 8 € (0, 1),
the parabolic seminorm C/*(I x Q) is defined by

|u(t7 'T) — u(tlv I/>|

e = 32 gy o — L0
z,7' €N
We will also denote
[u]ce(1xq) = f}g[U(t’, Veay, [ules (1xay = j}ég[u('al")]cm-

1.1. Interior regularity. We present here the main result regarding the interior
regularity of solutions to nonlocal parabolic equations .

When the kernels in are regular, interior regularity is fairly well understood;
see for example [JX15, [CD14, [CKS10]. An important problem, however, is to un-
derstand what happens for singular kernels of the type —.
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Important results in that direction have been recently obtained by Schwab-Silvestre
[SS14] and by Kassmann-Schwab [KS14]. The results in [SS14] [KS14] allow kernels
with no homogeneity and, more importantly, with z-dependence (with no regularity
in z). For operators , these results yield the Holder continuity of solutions for
wide classes of measures pu. More precisely, the results in [SS14] yield the Holder
continuity of solutions to whenever the spectral measure p is strictly positive
on a set of positive measure; while the results of [KS14] do not assume the measure
i to be absolutely continuous, and apply also to the operator . Still, even in
the case of translation invariant equations, the interior regularity for general stable
operators was open.

In case of elliptic equations, this problem was recently solved in [RS14b], where the
second author and Serra obtained sharp regularity estimates in Holder spaces for all
translation invariant stable operators —. Here, we extend these estimates
to the more general context of parabolic equations.

Our first main result is the following interior cyegmlarity estimate. It essentially

states that if u, — Lu = f € CZ" then u is C’;JFX and C2*25. Notice that, even in
the case f = 0, the Holder continuity of solutions is new.

Theorem 1.1. Let s € (0,1), and let L be any operator of the form (1.3))-(1.4). Let
u be any weak solution to

Owu— Lu = fin (—1,0) x By. (1.7)
Let oo € (0,1) be such that - € (0,1) and that o 4 2s is not an integer. Let

g’a
G2 ((-1,0)xR —1,0)xB1)

Then,

lelleyess (g pxp ) T Illezsen(( o)) = OCa (1)

for some constant C' depending only on n, s, « and the ellipticity constants (1.4]).

Remark 1.2. The previous expression (|1.8) can equivalently be written as

. L o < Cd,.
||UtHCE§7a((—%,O>XB1/2) + ” U||Ct§7a((_%’0>><Bl/2) - «

This follows from (1.8]) and the equation ([1.7).

Notice that it is required that u € C25 in all of R™ in order to have a Cg}:ﬂzﬁ&

estimate in B;,. We show in Section m that this is in fact necessary: we con-
struct a solution u to the homogeneous fractional heat equation, which satisfies

we CET(=1,0) x R™) but u & C; 7% ((=1,0) x Byjs).
The spatial regularity requirements, u € C2 in (—1,0) x R", can be relaxed if the
kernel of the operator is regular; see Corollary [3.7]

When the right hand side in (1.7 is f € L, we establish the following.
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Theorem 1.3. Let s € (0,1), and let L be any operator of the form (1.3))-(1.4). Let
u be any weak solution to (L1.7)). Let e > 0 and

Co = |lull oo ((—1,0)xRn) + | fll oo (= 1,0 x B1) -
Then,
ey ((yopmya) T Nllezre((-4.0)cmy) = OO
for some constant C' depending only on n, s, e and the ellipticity constants ((1.4)).
See also Corollaries [3.4] [3.6] [3-§| for more consequences of Theorems [I.1] and [I.3]

1.2. Boundary regularity. We next present our boundary regularity results.

In the case of elliptic equations, the boundary regularity is quite well understood:
see [RS14D)] for general stable operators in C''' domains, and the results of Grubb
[Grul4, [Grulf)] for higher order estimates in case that  is C*™ and a € C>(S™1)
in (1.2).

Nonetheless, there are no similar boundary regularity results for nonlocal para-
bolic equations, not even when the operator L is the fractional Laplacian.

Here, we extend the boundary regularity estimates of [RS14, [RS14b| to the context
of parabolic equations. We state our results as local estimates for the following
problem

{ Oww—Lu = f in(—1,0)x (QNBy) (1.9)
u = 0 in(=1,0) x By \ . '

First, we prove a C? regularity estimate up to the boundary. For the fractional
Laplacian this could be deduced combining the heat kernel estimates from [CKSI0]
with known interior estimates. However, such precise heat kernel estimates are not
known for more general stable operators.

Proposition 1.4. Let s € (0,1), let Q be a C*' domain, and let L be an operator

of the form (1.3)-(1.4). Let u be a weak solution to (1.9). Then,
u 1. S O oo ((— 1 + u oo ((— n 5 110
| ”OE,; (-3.0)xB1) (11l oo (=100 x(@nB1)) + Nl Lo ((=1,0)xRm)) (1.10)

where C' depends only on n,s,Q and the ellipticity constants (|1.4)).
In the next result, and throughout the rest of the paper, we denote
d(z) := dist(z,R" \ Q).

Our second and main boundary regularity estimate is the following. This is new
even when the operator L is the fractional Laplacian.

Theorem 1.5. Let s € (0,1), let Q be a CY' domain and let L be an operator of

the form (1.3)-(1.4). Let u be a weak solution to (1.9) and

Co = ||[ull oo ((=1,0)xrm) + | fl| Lo ((=1,0)x (@ B1)) -
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Then, for any e > 0,
< CCy. (1.11)

||u||C’t17€((—%,0)><Bl/2) + ||u/d Hc’é_i’s_e((—%,o)X(ﬁmBl/Q))

The constant C' depends only on €, n, s, Q and the ellipticity constants (1.4)).

1.3. The Dirichlet problem. Finally, we state the results from the previous sub-
section as a corollary regarding the Dirichlet problem. It is an immediate conse-
quence of a combination of Theorem [L.1} Proposition [I.4] and Theorem

The Dirichlet problem for the nonlocal parabolic equations is

ou—Lu = f inQ, T>t>0
u = 0 ImR"\Q, T>t>0, (1.12)
u(0,-) = wy in, t=0,
where we consider again a domain €2, but now we also have to deal with an initial

condition wug, exterior conditions fixed in R” \ 2, and a time 7" > 0.
The result reads as follows.

Corollary 1.6. Let s € (0,1), let L be any operator of the form (1.3)-(1.4) and let
119)

Q be a bounded C*' domain. Suppose that u is the weak solution to . Then,
leallgpses (Gro,mym) + ““/ds||cé;i“((t0,mxﬁ) < C (luoll 2@y + 1f iz (0r)x2) »
(1.13)

forany 0 <ty <T and for all e > 0. The constant C' depends only on €,n,s,$2,ty, T’
and the ellipticity constants ((1.4]).

Moreover, if f € C2, with a € (0, s] such that o+ 2s is not an integer, then for

tx

any K € Q compact,

HUHC:JF%((tQ,T)XK) + |’uHC£S+a((t(),T)><K) S C <HU’0||L2(Q) + ||f||C2as’o‘((07T)><Q)> . (114)

t,x

The constant C' depends only on o, n, s, K, ty, T and the ellipticity constants (|1.4])

Notice that we require @ < s in ([1.14). It turns out that, for general stable
operators, solutions are not better than C?* inside §2; see [RV15, Theorem 1.2] for
a counterexample. Still, we prove here that this is not the case for time regularity,
and show

feCrQ) = ue Q)
see Corollary [6.3]

1.4. Ideas of the proofs. To prove the interior and boundary regularity estimates
we use blow-up arguments combined with Liouville-type theorems for parabolic non-
local operators.

More precisely, in order to establish the interior regularity estimates we adapt the
scaling method of Simon in [Sim97] to the context of nonlocal parabolic equations.
We are then lead to a Liouville-type theorem in (—o0,0) x R", which we prove by
using the heat kernel of the operator, as in [RS14b].
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On the other hand, to obtain the regularity up to the boundary for u we adapt the
methods of the second author and Serra in [RS14] to parabolic equations. For this,
we need to construct barriers with the appropriate behaviour near the boundary,
which is done by combining the barriers of [RS14b] with an eigenfunctions’ decom-
position of the solution to the parabolic Dirichlet problem in a bounded domain.
Furthermore, to obtain the regularity up to the boundary for u/d® we first adapt
the blow-up methods of [RS14b] (based on the ideas in [Ser15]), and then combine
them with the estimates for v up to the boundary.

The paper is organised as follows. In Section [2] we prove Liouville-type theorem in
the entire space, Theorem 2.1 In Section [3|the interior regularity results are proved,
Theorems [I.1] and [I.3] In Section [d] we prove the C? regularity up to the boundary,
Proposition (1.4, and deduce from it a Liouville-type theorem in the half space. Then,
in Section [5] the main boundary regularity result is established, Theorem [I.5} and
in Section [0] the Dirichlet problem is treated, thus proving Corollary [1.6], We end
with some remarks on the sharpness of the estimates in Section

2. A LIOUVILLE-TYPE THEOREM

In this section we prove the following result, a Liouville-type theorem for nonlocal
parabolic equations.

Theorem 2.1. Let s € (0,1), and let L be any operator of the form (1.3))-(1.4). Let
u be any weak solution of

Owu—Lu=0 in(—o00,0)xR"

such that )
[ut, LoeBry < C(RY +1) for R = i[>,
for some v < 2s. Then u is a polynomial in the x variable of degree at most |v].

To prove the above theorem we follow the ideas of [RS14b] for the elliptic problem.
We denote p(t, z) the heat kernel associated to the operator L. Note that, by the
scaling property of operators, we have

pt,x) = ¢~ p(L, 2t %).
The following proposition is an immediate consequence of [RS14bl, Proposition 2.2].

Proposition 2.2 ([RS14b]). Let s € (0,1) and let L be any operator of the form
(1.3)-(1.4). Let p(t,z) be the heat kernel associated to L. Then,

(a) For all § € (0,2s), t >0,

/n (1 + [2[*7°) p(t, x)da < C (1 + t2‘32‘5> . (2.1)

(b) Moreover, fort >0,

n+1

[p(t, 2)]cor@ny < CE 2
The constant C' depends only on n, s, 0, and the ellipticity constants (1.4]).

(2.2)
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We can now prove the Liouville-type theorem.

Proof of Theorem[2.1]. The proof is parallel to the one done in [RS14bl, Proposition
2.2] for the elliptic problem.
For every p > 1 define

o(t, ) = pu(p®t, px).
It is easy to check 0w — Lv = 0 in (—o0,0) x R™, and moreover, for R > |t

lw(t o) = o7 1u(p™t, (s, < p77C 1+ (pR)7) < C(1+ RY) for p(z ;
2.3

1
25’

Now, we can use that, for t € (—1,0)
v(t,z) =v(=2,2) *p(2 +t, ), (2.4)

where the convolution is only in the z variable. Notice that when ¢ € (—1,0),
then p(2 + t, z) fulfils the same bounds as p(1,z) in [RS14b] with maybe different
constants, thanks to —. Therefore, the rigorous proof of the equality
is the same as in [RS14b].

We now consider the function v(t,z) for t € (—1,0). We know that v(t,z) <
C(|z|* + 1), and we want to show

<C

[U]Cﬁ((—l,o)xBl) >

for some £ > 0 and C' depending only on n, A\, A and v. To do so, let x,2’ € By,
with © # 2/, and let t € (—1,0). Then, using (2.4),

o(t.0) = o) = | [ (2t =) =2 4 10" )l 0)|

IN

/<M@@+ax—w—p@+uf—ww«awm4+

+ 2 sup
reB;

[t -z,
ly|>M
The first term in the sum can be bounded by
/ (P2+tz—y) —p2+ta" —y)v(=2y)dy < CM" |z — 2|,
ly|l<M

using (2.2)) and the bound on v(¢,z). The second term is bounded again using the
bound on v(t,z) and (2.1)) with § = $(2s — ) > 0,

/} PR+t x — y)o(=2,y)dy| < CM.
y|=M

Thus, we have

lu(t,z) —v(t,2")| < CM" |z — 2’| + CM~°, for any t € (—1,0).



8 XAVIER FERNANDEZ-REAL AND XAVIER ROS-OTON

Choosing
9g —
M:|x—x’|_f/‘5, Withl_wzgﬁgz# 7
) 2s + 2n 4+~
we obtain
[U]cg((q,o)xBl) <C.

Equivalently, for any p > 1,

—£
es (g 0xm,) <P
Let us now define the following incremental quotient function, for h € R™ fixed,

u(t,z 4+ h) — u(t, z)
WS (t, ) = e :

which, for any ¢ € (—1,0), satisfies
us (t,2) < Clz|~¢, for |z > 1.

Now repeating the previous argument replacing u by ui, and v by v — &, one gets

[u]ng((_ B2 0)xB) = CRY%. We are using that after the previous step, the new

¢ = ﬁ?ﬂ—ﬁig > £, so that we can take ¢ instead of £'. Iterating this procedure,
after N steps,
[U]Cfcvé((—R%,O)xBR) < CR’Y_Ng‘

Taking N as the least integer such that N¢ > + and letting R — oo, we finally

obtain
[U]oﬁf((—oop)xw) =0,

which implies that for each t € (—00,0), u(t,z) is a polynomial on x of degree at
most |v] < |2s].

Finally, Lu = 0 for all (¢,z) € (—00,0) x R™, and thus d;u = 0, so that u is
constant with respect to t. Il

3. INTERIOR REGULARITY

In this section we prove the main results regarding the interior regularity of the
solutions, Theorems [I.T]and [I.3] We first present a short subsection introducing the
seminorms that we are going to use in the proofs.

3.1. Parabolic Holder seminorms. Many times we will implicitly use that
[“]cﬁf(zxg) ~ [u]cf(mz) + [U]ce (1xe), (3.1)

in the sense that these two seminorms are equivalent.

The definition in (1.6 is not enough for the cases considered in this paper; we
need to introduce higher order parabolic Holder seminorms. For s € (0,1), and for
given a € (0, 1), we define
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Moreover, throughout the section we assume that « is such that g € (0,1) (o <
2s), and that a4 2s not an integer. Let v = |2s+«] and I x 2 be a bounded domain
with I C (—o00,0], Q@ C R". We define the following parabolic Hélder seminorm

( [atu]cg;ca(lxﬂ) + [u]C§S+Q(IXQ) lf vV = O7
[U]§1><+Qﬂ728+a) - [atu]cgf(lxﬁ) + [vmu]ijgil’23+a_1(1><§2) ifv=1,
2 3 —
\ [8tu]05,za(l><g) + [Vmu]cfs-zo;—l (IXQ) _'_ [Dxu]cjz-’ég_z725+°‘*2(IXQ) lf VvV = 2
(3.2)

Notice that with this choice of norms we always have a good rescaling. That is,
if w,(t,z) = u(p®t, px) then
1+8,25+a s+a 1+8,25+a
[UP]EXQ ) = PZ " [U’]Ep—%[)x(p)—lg)' (3.3)
The previous definition will be useful to prove Theorem but for Theorem [I.3
we need a definition for different indices. Namely, we will denote v := [2s] — 1,
€ > 0 such that 2s — e > v, and

< [U]Cf;i’zsfe(lm) if v =0,
Qi »
[U]Ctl_ﬁ(lxﬁ) + [VxU]Ct%E;;I’ZS_e_l(IXQ) fv=1.

Note that we still have a good rescaling, i.e., for u,(t, z) = u(p*t, px) then

1—5,25—€ s—e 1-55,25—€
[UP]EXQQL ) = p2 [u]((p—2i1)x(p)19)- (35)

The full norm is defined by

P 1+8,2
lalli ™t = lulopr ey + i >
= ||Oyul| oo (1x ) + Z ||Dzﬂj}u||L°°(I><Q) + [u}glx-i-gﬂ,?s—l-a)?
[p|<v
where we have also defined the HUHC;Z( Ixg) Dorm. The definition of ||“||2;X%§2376 "

analogous.
An interpolation inequality can be proved for these norms: for any x > 0 we have

1+58,2s+a
lull e reqy < Rllg ™ + Cllullz=(1x0). (3.6)

for some constant C' depending only on , n, s, @ and . Analogously,

(1—-55,25—¢)
HUHCR’;((—l,o)xBI) < ’i[u]((_f,‘o)xBl) + Cllul| oo ((~1,0)x 1) (3.7)

for C' constant now depending only on k, n, s and e.
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To show (3.6)-(3.7)), it is enough to use the equivalence of seminorms (3.1)) and
classical interpolation inequalities in Holder spaces.

Finally, another result we will need is the following inequality in bounded domains:
for any given n € C*°(R™), and u = u(t, ), then
1+3,2s+a 143,254+«
il < C (Inllezse@llullcrr e + D> nlleye)) . (38)
for some constant C' depending only on n, s, a, 3, I and 2. To see it, use the analo-
gous inequality for Holder spaces and the equivalence of seminorms (3.1]). Similarly,

one finds

By B,a
il < € (s llullzeqe + 15 Inle) (3.9)

for some constant C' depending only on n, s, o, 5, I and §2.

3.2. Proof of Theorem Now that we have introduced the notation, let us
proceed to prove the results regarding the interior regularity of solutions to nonlocal
parabolic equations.

To begin with, the following lemma will give us a tool to study the convergence

of functions in the proofs of Proposition [3.2] and Proposition [3.3] below.

Lemma 3.1. Let s € (0,1), A, A > 0 fized constants, and let (Ly)ren be a sequence of

operators of the form (1.3)-(1.4)). Let (ug)ren and (fx)ren be sequences of functions
satisfying in the weak sense

@uk — Lkuk = fk inl x K

for a given bounded interval I C (—o00,0] and a bounded domain K C R™.
Assume that Ly have spectral measures ju, converging to a spectral measure . Let
L be the operator associated to p (weak limit of Ly), and suppose that, for some
functions u and f the following hypotheses hold:
(1) ui — w uniformly in compact sets of (—oo,0] x R”,
(2) fr — f uniformly in I X K,
(3) supyey |uk(t,z)| < C (14 |z|**7¢) for some e > 0, and for all x € R™.
Then, u satisfies
ou—Lu=finl x K

i the weak sense.

Proof. We have that

/ w(=0m— L) = | fin, forall y€ C=(I x K).
IxR™ IxXK

On the other hand, since |n(z + y) + n(xz — y) — 2n(z)| < Cmin{l, |y|*}, by the
dominated convergence theorem we obtain that Lyn — Ln uniformly over compact
subsets of I x R".
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Moreover, 1 has support in K, which yields |Lyn(z)| < C(1+ |2|****)~!. Combin-
ing this with the growth of uy (see hypothesis (3)) we get that |ug(—0m — Lgn)| <
C(1 + |z|"*¢)~!, and therefore, by the dominated convergence theorem

/ ur(—0m — Lgn) — u(—=0m — Ln), forallne CX(I x K).
IxR™

IxR™
Since it is clear that

/ fa— [
IxXK IxK

then we have that the limit u is a weak solution to the equation
Ou—Lu=fin I x K,
as desired. O
Before proceeding to prove Theorem [I.1] let us first show the following.

Proposition 3.2. Let s € (0,1), and let L be an operator of the form (1.3))-(1.4).

Let o € (0,1), such that 3 = & € (0,1) and a + 2s is not and integer, and let

v =|2s+ al. Assume that u € C°((—00,0] x R™) satisfies

Owu— Lu = fin (—1,0) x By
with f € Cff((—l,O) X By). Then, for any 6 > 0 we have
(14+8,25+a) (1+8,2s5+a)
T ) < OG0 + € (Il ropem) + Flegoqaromn)

(3.10)

where the constant C depends only on 6, n, s, a and the ellipticity constants ((1.4]).

Proof. Let us argue by contradiction. Suppose that for a given § > 0 the estimate
does not hold for any constant C, so that for each £ € N we have that there exist
functions wy, € C°((—00,0] x R™), fi € C’f’;‘((—l, 0) x By), and operators Ly, of the
form — such that dywy, — Lywy = f in (—=1,0) x By and

(148,2s+a) (148,2s4a)
[l =272 0)x 8, 1) > OLWRl( 1,0y xR T F <||wk||cé,§<<—1,0)x31> + [fk}cff;f«—l,mxBl)) '

(3.11)
In order to find the contradiction we will follow four steps.

Step 1: The blow-up parameter, p,. We will need to separate three different
cases, according to the value of v.
e Case v = 0. The seminorm in this case is
(148,2s+a) .
[ k](—Q—QS,O)xBl/2 - [8twk]cg;f((—2—2s,0)xBl/Z) + [wk]cg%”“((—zf?s,o)xBl/Qw
and by definition, we can choose zy, yr € Bi/2, tr, sk € (—272,0) such that

1 [wk](1+ﬂ,2s+a) |0vwi (tr, T1) — Orwr(Sk, Yi)| |w (th, ) — wi(tr, Yr)|
_9—2s
4 ((=2722,0)x By ) |5k — til? + |25 — yi|® |2, — yi|2ote

(3.12)
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Define,

P = [tk — sil %+ |z — il

and now we claim that, up to possibly a new choice of s;, we have

N [wk]ﬁéffii}(j‘i,gm) |Ovwy (tr, 1) aatwk(skza Yi)| n |wi (L, xk)2s+:}k(tk> yk)|’

Pk Pk
(3.13)

for some small constant y > 0 depending only on n. Indeed, if in the equation (|3.12))
the first term of the sum is greater than the second one, we are done. Otherwise,
we can fix s; = t; and obtain the desired result.

Therefore, we have

X555, ) <

- 2||Opw | oo ((—2-25.0)x B, o) N 2||will Lo ((—2-25.0)x B, 12)

Pk o
(148,2s+a)
<(1 L1 )[wk]«—r?amwug)
S\ ot k ’

where in the last inequality we are using (3.11). We finally obtain that py — 0 as
k — o0, since

1 1
X(TL)]{? S o + 2s+a”
k k

e Case v = 1. Proceed as before, by choosing z, yr, € B2, t, sp € (—272%,0)
such that

l[wk](uﬂ,gsw) |0y (th, 1) — Opwr (s, yn)| [ Vewr(th, 7x) — Vaowg(se, yi)|

2 OB = s P [k — el [t — s o — et

(3.14)

Define py as before. Now, it immediately follows that

(148,25+a) - |Ovwi(th, T1) — Orwi(Sk, Yk )| n \Vaw(tr, 2r) — Vawi (s, yr)|

x(n) [wk]((_zfzao)xgm) e prsta-l

(3.15)
where we keep the same constant x(n) > 0 as in the previous case, by making it
smaller if necessary. The same reasoning as before yields p, — 0 as k — oo.

e (Case v = 2. A similar reasoning as in the case v = 0 yields that, for some
constant x(n) > 0, there are @y, yy € Bija, tr,sp € (—272%,0) and p;, defined as
before such that

(148,25+a) |Oywi (tr, 1) — Opwi(Sk, Ur)|
X)Wl o e 0y, )

(3.16)

Pk
| D2wy(te, tx) — D2wi(sk, y)| | |Vowe(te, 2) — Vawg(se, )|
+ 2s+a—2 + 2s+a—1 :
I P

Therefore, by the previous argument, p, — 0 as k& — oo.
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Step 2: The blow up sequence. We will proceed with a blow-up method.
We begin by defining the following functions, where we will assume that t, > s
(otherwise, we can swap them),

w(ty + pit, o + prex) — pr(t, @)

143,25+
Pisw[wk]g(_lp)m%

vg(t, z) =

Here, pi(t,x) is a polynomial in t of degree at most 1 plus a polynomial in x of
degree at most v, such that

vg(0,0) = -+ - = D¥v,(0,0) = 04vy(0,0) = 0. (3.17)
First, notice that this function has a bounded (1 + 3, 2s + a)-seminorm,

(148,2s+a)
[Uk]((—%p;%,o]x]l&n) <1 (318)

Indeed, this follows simply by considering the scaling of the seminorm (see (3.3)),
and noticing that the seminorm of the polynomial p;, is zero.

Secondly, we have uniform convergence towards 0 of the following quantity for
fixed 7 € (—1,0) and h € By,

(8 — Li) (gt + 7,2 + ) — v(t, 2))| < % =0 (3.19)

uniformly in (—%pZQS,O) X B(lp,jl—h)' Indeed,
2

|0y — Li)(vi(t + 1,2+ h) —vg(t, )| =

et lpkh|* (e + (4 T) @+ pr(x + ) — fi(te + 0%t wp + pr)|
- S+ 2s o

AL e o271 + [ pih
< C(n) ieperoxmy _ Cn)

(1+8,2s+a) —
[wk]((_l,O)an) b

— 0,

where in the last inequality we used (3.11)). o
We now define the following points in the set [—1,0] x By,

Sk — 1tk Yr — Tk S — tg, Yk — Tk
é-k = ( 25 ) ) ,IE;I) = ( %8 ,O> s 61(32) = (07 ) 5
Pk Pk Pk Pk
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and notice that

0wy (S, Yr) — Opwy(tg,
Orvr(§k) = Vwi(sk yk)(lw’;sfa()k ) for v=0,1,2,

Py [wie] ((—1,0)xR™)

o (€?) _ Witk Yr) — wi(te, k)

forv =0
k 25+ (1+8,2s+a) ’
ol A s
v DY wi (g, y) — Diwy(tr, xr)
DYv(&) = N Y P for v =1,2,

Pk [wk]((—l,o)an)

Vm ) B voc 3 )
Voun(elV) = eon 1) — Vel t) gy, oy

2s+a—1 (1+8,2s+a)
P [wk]((—Lo)an)

Thus, combining (3.13))-(3.15))-(3.16) with (3.11)) we obtain

Oror(€)] + (€2 >x(n)d  itv =0,
1Os0(&6)] + | Vour(&)] >x(n)d if v =1, (3.20)

10,0k (&)| + | D20k (&) + | Vave (€)] >x(n)s  if v =2.

Notice that, up to a subsequence, &, converge to some ¢ € [0,1] x B; (and so do
'3 ,(j) and § ,(f)). From now on we restrict ourselves to this subsequence.

Step 3. Convergence properties of the blow-up sequence. Recall that
we have a uniform bound on the seminorms of v, (3.18)). Thus, we deduce that,
up to subsequences, v converges in C} and in C% to some function v over com-
pact subsets of (—o0,0] x R™. Indeed, this follows since the Hélder seminorms
[Uk]CtlJrB((—%p;QS,O]XR")’ [Uk]cg%”“((—%p;?s,o]xﬂw) are uniformly bounded with respect

to k € N, and the domains are expanding to (—oo, 0] x R™.
We restrict ourselves to this subsequence, and obtain a limit function v defined
in (—o0, 0] x R™ such that

v(0,0) = -+ = D¥v(0,0) = 9,(0,0) =0, and [v] I < 1. (3.21)

By (3.20) and the nice convergence in C’t{ ', we get that v cannot be constant.
From now on we want to consider the functions vy (t+7, z+h)—vi(t, z) for fixed 7 €
(—=1,0),h € By. We want to compute an upper bound for |vg(t+7, 2+ h) —vg(t, z)|,

for t € (—%p,;% — T, O] and x € R™. To do so we separate three cases again:
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e Case v =0,

’Uk(t—i_T’x—i_h) _vk(t7x>’ <7 sup |atvk(t/7x/>|
t'e(t+7,0)
@' €Bz|4 ||

+ h23+a sup [Uk(tla .)]CQS-O-&(B‘ZH_HL\)
t'€(t+7,0)

< C(lz|*+ [t +1)

using the bounds on the seminorms of v, and (3.17). The constant C' can depend
on 7 and h.
o Casev =1,

et + 7,2+ h) —op(t,2)| <7 sup  [Oui(t, 7)) +h sup  [Vau(t,2)]
t'€(t+7,0) t'€(t47,0)
&' €Bjy|4+|n| ' €B|g)4 ||

SC(Jo]* + a7t 4[] + |t

2s+a—1

5.

e Case v =2,
|Uk(t + 7,7+ h) - vk(tv J})| <7 sup |8tvk(t,7 ZL',)| +h sup |vmvk(t,7 ZL',)|
t'e(t+7,0) t'e(t+7,0)
@'€B)z| 4|l @'€Biz| +|n|

Now, we use that

sup |vzvk(t/7 ZL‘/)| < sup |vka (tla l’,) - vka<07 ZE,)| + sup |vka(07 ZL‘/)|

t'e(t47,0) t'e(t47,0) t'e(t4,0)
' €B|y|+|n| ' €B|z|4|n| ' €B|y|4|n|
2s+a—1
<HEEE h swp (2] sup [D2ug(0,2")]
:EIGB‘QC‘+|M :ENEB‘II‘
2s+a—1 _
<C (|57 + Jafrret),

so that in all we have

ot + 7,2 + h) —w(t, @) < Ozl + o7+t + |t

2s+a—1

In all three cases we deduce that, since a < 2s and a < 1,

on(t + 7,2 + h) — ot )| < C (WH mr ) , (3.22)

where € = min{2s — a,1 — a} > 0 and C is independent of k. We recall that the
previous bound is found for t € (—% P -, O} and x € R™.

On the other hand, from the compactness of probability measures on the sphere
we can find a subsequence of {L;} converging weakly to an operator L, that is, a
subsequence of spectral measures {ug} converging to a spectral measure p of an
operator L of the form —. Therefore, we have the ingredients to apply
Lemma [3.1] to the sequence vg(t + 7,2 + h) — vg(t, x).

Fixed any bounded sets I C (—o00,0], K C R" we have
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o vp(t+ 7,2+ h) —vi(t, x) converges to v(t + 7,z + h) — v(t, z) uniformly over
compact sets,
o (0y— Ly)(vg(t+7,2+h) —vi(t, x)) converges uniformly on K to the constant
function 0,
o [up(t + 7,2+ h) —v(t,x)] < C(1+ |x]*7°) for all z € R", where C' now
depends on [, which is fixed, and for k large enough.
Therefore, by Lemma [3.1] we deduce that

(0 — )('U(t—i-T,x—l—h) —ov(t,z))=01in I x K.
Since this can be done for any I C (—o0,0] and any K C R™, then
(0, — L)(v(t + 7,24+ h) —v(t,z)) = 0 in (—o0,0) x R™.

Step 4: Contradiction. Now, from the expression and using the Liouville-
type theorem in the entire space, Theorem we obtain that v(t+7,x+h) —v(t, x)
must be a polynomial in z of degree at most |max{c,2s+a —1}| = max{0,v —1}.

This means that v(¢,x) is a polynomial in x plus a polynomial in ¢, satisfying
. Therefore, v = 0, which is a contradiction with the expression in the
limit. O

With the previous result we have the key ingredients to prove our main interior
regularity estimate.

Proof of Theorem[1.1 Let 8 = 5 € (0,1) as before.

Pick n € C°(B;) a cutoff function depending only on z such that n = 1 in
Bsjs, and consider w € C°((—o00,0] x R"), satisfying dyw — Lw = f in B,. Ap-
plying Proposition to the function nw we obtain that, for any ¢, there is a
C =C(0,n,s,a,\ A) such that

(1+8,2s+a) (14+8,2s+a)
[W](Za"20 0y, ) S OMWN( 1oy T
+C ("w”ctl;:((—l,mx&) T [f]c:if«—l,mxBn + (0 = L) (w — w”cﬁf((—l,mx&)) '

Now, since nw — w vanishes in B3/, we have that

[0 = L)(nw = w)]cpe (1 0)xmyy = L0 = Wl C10)xmy) < Clwllope—10)xmny:
(3.23)
Indeed, if we denote ¢ := nw — w, we clearly have

[gb]cf’;‘((fl,o)xR") < CHchﬁf((q,o)an)
(for example using (3.9)) inside By and noticing that |¢| = |w| outside By). Thus,

d
|Lo(t,z) — Lo(t',2")| < C . 1//2 ot,x+rl)+ otz —H"H)\Hl%du(@)

< C[¢] e o (=217 + |z~ / /
~ [QS]CEJ ((-1,0)xR (’ ‘ | sn-1 J1y |7“’1+28
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so that we reach our conclusion, since

/ / 1+2s () < (/ dﬂ(@) / r~7dr < CA.
sn-1Jijp |7 | Sn—1 1/2

The previous inequality, (3.23 - combined with an inequality of the form (3.8) for
[pw]({T02549) vields that for any § > 0, there exists a C' = C(8,n, s, o, A A) such

((—1,0)xB2)
that
(1+8,2s+a) (14-8,25+a)
[w]((*2*2s,0)x31/2) < [w](( 10)x32)+ (3.24)

+C <||ch;;;((_1,0)x31) + [f]cff((—l,o)xBl) + ”w”cff((q,o)xw» .

Now, using interpolation (3.6)), for any x > 0, there exists C = C(k,n,a, 3,5)
such that

1+8,254a)
Hw”cg;;((—LO)xBl) < H[w]ﬁ( 10)><31 + CHwHL‘X’ ((=1,0)xB1)-

Fixing k = §/C with C as in (3.24)), we get

(148,25+«) (148,254
[w]((72*28570§[><31/2) = 25[“’](( 1 O)ngg +C ([f]cﬁf((—Lo)xBl) + Hw”cﬁf((—Lo)an)) :
By a standard argument (see for example the Lemma after [Sim97, Theorem 2]
or the proof of [RS14b, Theorem 1.1 (b)]) we obtain that there exists a constant
C = C(n,s,a, A\, A) such that

(148,2s+a)
)27 0y ) < C <[f]05,’;((—170)><31) + ||w||ct‘f;;‘<<—1,0>xw>> '

Using interpolation again, it follows

(148,2s+a)
Hw”((72—23,0)><31/2) <C <[f]Cfff‘((71,0)><Bl) + HwHCﬁf((fl,O)xR”)) :

In particular, we obtain, for w € C2°((—o00,0] x R™)

sup |jw|| 146(_g-2:g) T SUD ||w]| p2s+a <
z€By /o G0 te(—2725,0) G (Baya)

By a covering argument, the domain of ¢ on the left hand side can be easily replaced
by (—=1/2,0).

To get the result for general u € an(( 1,0) x R™) we can use a standard

t,x
approximation argument. Indeed, if u € C’f; , and 7. is a standard mollifier, then
we regularise u and notice that (9, — L) (u* ne) f *n.. We now apply the result for
smooth functions to u * 7. and f * 7., and take the limit as € | 0, to get the desired
result. U
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3.3. Proof of Theorem We next prove the interior regularity for f € L,
Theorem To do so, we begin as in the previous case, with the following propo-
sition, analogous to Proposition |3.2}

Proposition 3.3. Let s € (0,1), v = [2s]| — 1, and let L be an operator of the
form (L.3)-(L.4). Let e > 0 be such that 2s —e > v Assume u € C°((—o0,0] x R")
satzsﬁes

Owu— Lu = fin (—1,0) x By
with f € L*((—1,0) x By). Then, for any § > 0 we have

(1-55,25—¢€) (1—55,25—¢)
(2725 0)x By ) < Ol (1)) T C (||u||cov (—10)xB1) T ||f\|L°°<(—1,o>xBl>)v
(3.25)
where the constant C' depends only on 6, n, s, € and the ellipticity constants (1.4)).

Proof. We follow the steps of Proposition [3.2]

Suppose that for a given § > 0 the estimate does not hold for any constant C": for
each k € N there exist functions wy, € CX((—o00,0] x R™), f € L>*((—1,0) x By),
and operators Ly, of the form — such that dywy, — Lywy, = fi in (—1,0) x By
and

= ,25—¢€)
i o, > Sl +k<||wk||cﬂi((—1,o>x31> + ||kaL°°<<—1,o>xBl>>

(3.26)
Step 1: The blow-up parameter, p,. We only need to separate two cases
according to the value of v now.
e Case v = 0. By definition, we can choose xy, yi € Bija, ty, sy € (—27%%,0) such
that
l[w G- 5250 |wi (e, 2x) — wi(sk, Y|
4 k ((—272°,0)x By /2) ’3k - tk|17i + ‘xk — ykPS*C‘

(3.27)
Define,

1
pr = |tk — sk|% + [op — yil-
As in the proof of Proposition there exists some small constant x > 0 depending
only on n such that

(1-£,25—¢) \wy (tg, T1) — wi(sk, ?/k)|
X(n)[wk]((qz—?s,o)xBl/Q) < pzs c (3.28)
k
Therefore, we have
_ € — 2||w || oo —2s
(1— £ ,25—¢) kLo ((—2725,0)x By /2)
X(n)[wk]((_;—%,o)xBl/Q) 25—
P
(1—55,25—¢)
Wk (2725 0)x 3, 2)
sz—ek )

where in the last inequality we are using (3.26]). Thus, we finally obtain that py — 0
as k — o0.
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e Case v = 1. Proceed as before, by choosing zy, yr, € B2, t, sp € (—272%,0)
such that

1 (1—55,25—¢€) |wi (te, T1) — wi(Sk, )| [Vowg(tr, ox) — Vow(se, yi)|

S[Wel(-572 0)xB, ) It — sil' 7% It — s 57+ |z — yal2met

(3.29)
Define py as before, and up to a possible new choice of y; (as in the proof of the
case v = 0 in the first step of Proposition , we obtain that

(1—£ 25—¢) |wi (te, 1) — wr(sk, 1) | [Vaowe(te, 1) — Vowr(sk, yi )|
X(n>[wk]((722—28,0)><31/2) 2s5—e + 2s—e—1 ’
Pk Pk
(3.30)

A reasoning similar to the one before yields pr — 0 as kK — oo again.

Step 2: The blow up sequence. We begin by defining the following functions,
where we will assume that ¢, > s, (otherwise, we can swap them),

w(tr + pi%t, o + pra) — pr(z)

25—€ (1—%25—5)

ve(t, z) =
Pk [wk]((—l,O)xR")

Here pi(z) is a polynomial in x of degree at most v, such that
vk(0,0) = D¥v,(0,0) = 0. (3.31)
Thanks to the scaling of the seminorm (see (3.5)), vy satisfies
(1—5=,25—¢)

(- bo2o]sr) = (3:32)

We also have uniform convergence towards 0 of the following quantity for fixed
7€ (—1,0) and h € By,

[vx]

(0 — L) (0a(t + 7.2 + ) — vp(t, 2))| < 222 0 (3.33)

uniformly in (—1p;%*,0) x B( ) Indeed,

1 —1
3P, —h
|(Or— L) (vg(t + 7,2 + h) — v (t,x))| =
= P el AR 7w el ) = filt o 2 )
[w] ((—Loyxrn)

€

205
< I’k
(1—55,25—€) —
[wk]((—ﬁo)xR") K

where in the last inequality we have used ({3.26]). o
We now define the following points in the set [—1,0] x By,

Sk =tk Y — X W Skl
fk - 25 ) ) E 2s 70 )
Pk Pk Pk

< 2pi||fk||L°°((fl,0)><Bl)

— 0,
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and notice that we have

:wk<5kza yrk) — wi(te, xx)

vk (&) e 39 for v =0
Pk [wk]((ﬂ,o)an)
)y We(Sk, Tr) — wi(tr, T1)
Uk(fx(g )) T e (0 fa2s 9 for v =1,
P Tkl (o))
vx 9 - vx t )
vka(gk) = wZ(Sk gjk) (1_6w2]1(_5) xk) for v = 1.
s—e— 257
Pk [we](—1b)xmm)

Hence, combining ((3.28))-(]3.30)) with (3.26)) we obtain
ve(&e)|l >x(n)d  if v =0,

0p (€] + | Vovi(&)] >x(n)s  ifv=1. (3.34)

Notice that, up to a subsequence, &, converge to some & € [0,1] x B; (and so do
13 ,(gl)) so that from now on we will restrict ourselves to this subsequence.

Step 3. Convergence properties of the blow-up sequence . Recall that we
have uniform bound on the seminorms of vy, (3.32)), we deduce that, up to subse-
quences, vy converges in Cf and in C¥ to some function v over compact subsets

of (—o0,0] x R™. This follows since the Holder seminorms ['Uk]clfi(( Ok
¢ —2Pk "

[Uk] s —e (1 25 .y are uniformly bounded with respect to k£ € N, and the do-
02 (- o k)
mains are expanding to (—oo, 0] x R™.
We restrict ourselves to this subsequence, and obtain a limit function v defined
in (—o0,0] x R™ such that
< 25—€

v(0,0) = D¥v(0,0) =0 and [U]E?:OQE:O]XRBL) <L (3.35)

By and the nice convergence, we get that v cannot be constant.

Now consider the functions vy (t 4+ 7, x + h) — v (t, ) for fixed 7 € (—1,0),h € By.
We want to compute an upper bound for |vg(t + 7,2 + h) — vg(t, z)| depending on ¢
and x, such that t € (—%p,fs -, 0}, xr € R", and we separate two cases:

e Case v =0,

|Uk’(t + 7,0+ h) - ’Uk(ta .CE)’ < C
using the bounds on the seminorm of v and , and where C' can depend on 7
and h.

e Case v =1,

ot + 7.2+ B) = vy(t,2)] < € (Jaf 4137 +1).
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As before we can assume that L, converges to L and then, using Lemma , we
find

(0, — L)(v(t + 7,24+ h) —v(t,x)) = 0 in (—o0,0) x R™.

Step 4: Contradiction. From the Liouville-type theorem in the entire space,
Theorem [2.1], we obtain that v(¢t+ 7,2+ h) — v(t, 2) must be constant, and therefore
v(t, ) is a polynomial of degree at most 1 in x plus a polynomial of degree at most 1
in t. Therefore, by we get v = 0, which is a contradiction with the expression

3.34)) in the limit. O

Using the previous proposition we can prove Theorem [1.3]

Proof of Theorem[1.3 Pick n € C°(Bsz) a cutoff function depending only on z such
that 7 = 1 in Bsjy and 0 < ¢ < 1in By, and consider w € Cg°(—o00,0] x R",
satisfying 0w — Lw = f in By. Applying Proposition to the function nw we
obtain that, for any 0, there is a C' = C(§,n, s, €, A\, A) such that

(1—55,25—¢€) (1—55,25—¢€)
[w](( 222s 0)x B /2) < 5[77w](( 120)><B2)+

+C <HwHC’2’;((—1,0)><Bl) e (-10xm) + [0 = L) (nw — w)HLw((—LO)xBl))
(3.36)

Now, since nw — w vanishes in Bz, we have that

100 = L) (nw — w)|| Lo ((—1,0)xBy) = [[ L0 — w)|| oo ((~1,0)xBy) < Cllw]| oo ((—1,0)xRn)-
(3.37)
Indeed, if we denote ¢ := nw — w, we clearly have

@]l oo ((=1,0)xm) < ||w]| £oo((~1,0)xR7)

and now

dr
Lo(t,z)| < C / o(t,x +1r0)|——=du(0
Loai<ef [ IO

© dr
< CJ6llm(roprn) / / D du(68) < CA 6110y
Ssn—1 J1/2 |7

where C' depends only on n and s.

The previous inequality, (3.37)), together with HanCS’"(—l,O)xBQ < CHch}”(—LO)xBQ
(for C' depending on 7 fixed) yields that for any § > 0, there exists a constant
C =C(0,n,s,e, A\ A) such that

(1—5;,25—¢)
(]2 0)xBy ) < (3.38)

(1—55,25—¢)
< 5[w]((—12,b)sz) +C (HwHCtO,’:((—l,O)XBﬂ [ Fllzee (1,081 + HwHLOO((—l,O)an)) :
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Using interpolation ([3.7)), for any x > 0, there exists C' = C(k, n, s, €) such that

(1—=,25—¢)
||1,U||C£)7;/((_170)X31) S K[U)](( 10)><Bl +C||'UJ||LOO( 1,0)xB1)-

Fixing x = §/C with C as in , we get
(1—55,25—¢) (1—55,25—¢)
[W](( 222 0By 1) < 201w)( " Fene) + C (I lz=(-rox) + lwll (10 xmm)

From which, as in the proof of Theorem|[L.1] there exists a constant C' = C(n, s, €, A, A)
such that

—55,25—€)

||w|| ((—2725,0)x By /2) <C <Hf||L;>?z((—1,o)xBl) + ||wHL<>o((—1,0)an)) )

and this implies the bound we wanted.
To get the result for general v € L>((—1,0) x R™) we use a standard approxima-
tion argument, and we are done. O

Let us now give a corollary on the regularity of solutions without any constrain
in the relation between a and .

Corollary 3.4. Let s € (0,1), and let L be any operator of the form (1.3])-(1.4]).
Let u be any bounded weak solution to (1.7)). Let

Co = ||U||cgf((—1,0)an) + ||f||ogf((—1,o)x31)'
Then,
“u‘|ctl+'87€((7%70)><31/2) + HuHcﬁ”“*é((—%,o)me) S 0007 (339)

for any € > 0, where the constant C depends only on €,n,s and the ellipticity
constants (|1.4)).

Proof. Define the following incremental quotients in x,

Wt 2) = u(t, +|};L)|a_ u(t,:v), it x) =

for some h € R" fixed. Notice that
Ouult — Lul = fin (—1,0) x By_p.
We apply Theorem [I.3] to the previous functions, reaching

flt,x+h)— f(t,z)
|hl*

sup ||ul, ”01 ¢(—g-2s0) T Sup HUZHCis‘E(Bl/z) =
zEB /2 te(—2725,0)

<C (HféclHLoo((fl,O)XBl_W) + HuZHL"Q((fl,O)XR")) .

Now, since

I/\

C([f] a((— 10)><B1))a
HuaHL‘X’ (—1,0)xR™) S C([u] a((— 10)><R7L))

||f ||L°° 10 XBl \h|
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and

h
sup  sup  |jug|| 25— > sup  ||ul|pes—eta
heBy s te(—2-250) H e HCT (By/2) te(—2-25 0) ‘ ’C’I (B1/2)?

(see for example [CC95, Lemma 5.6]) we obtain

sup [luflcze-erap, ) < C ([flear0xm) + [Wos(-1o)xrm) -
te(—2725,0)

The same can be done taking incremental quotients in ¢, and adding up both
inequalities we reach the desired result. Il

Remark 3.5. The previous corollary is still true if we only subtract an arbitrarily
small € to one of the terms in the left hand side of (3.39). For example, if 258 < a
then we apply Theorem with indices # and o = 2s/ and combine it with the
argument from Corollary [3.4]

When the nonlocal parabolic equation for the operator L is fulfilled in the entire
space R™ we have a nice result where we no longer require a priori spatial regularity
of the solution.

Corollary 3.6. Let s € (0,1), and let L be any operator of the form (1.3))-(1.4)).

Let u be any bounded weak solution to
Owu— Lu = fin (—1,0) x R™ (3.40)

Let a € (0,1) be such that 5= € (0,1), and
Co = |Jul oo ((-1,0)xrm) + | f

a
250

CE (—1.0) xR’

Then, if a4 2s s not an integer
lelleress (o T lellezere((-g.0)smr) < OG0
The constant C' depends only on n, s, and the ellipticity constants (|1.4)).

Proof. Simply apply Theorem to balls covering R™ to get

el gess (g 0)camy + 1elleeee((-3.0)xmm) <

<0 (Ml -gopem * Ml goyem)
On the other hand, from Theorem applied again to balls covering R™ we have
lell e (s 0yxmmy <€ (Il (-royxzm) + [ f e (-10xmn))

where we took € = 2s — a > 0. Combining both expressions we obtain the desired
result. (|

We next prove a result when the kernels have some regularity.
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Corollary 3.7. Let s € (0,1), and let L be any operator of the form (1.2)) with
bounds (1.4). Assume that
a € Cs™ Y,

for some o € (0,1) such that o < 2s.
Let u be any bounded weak solution to (1.7)), and

Co = [[ul] + 11

(e .
CT(( 1,0)xRm) C2s " ((—1,0)x B1)

Then, if 2s + « is not an integer,
Felleyess (g oppa) T Nellezeen((p0)cma) < €0 (34

for some constant C' depending only on «,n, s, ||al|cesn-1y and the ellipticity con-

stanst (1.4]).

Notice that now on the right hand side of the estimate the term depending on u
no longer requires a C* regularity in the x variable. Instead, only uniform regularity
in R™ in ¢ is required.

Proof. The proof reduces to see that, in the proof of Theorem [I.1], we can replace
the bound (3.23)) (recall ¢ = nw — w for a cutoff function n) by

[L¢]CT “((-1,0)xB1) — CHw”CT (—1,0)xR")"
Indeed,
[Lo(t,x) = Lo(t', a')| =
= / o(t,2)K(z —x)dz — / ot 2)K(z — x)dz
R™\ By /2() R™\By /2(2)
< Clt —¥)%[g)

o (—10)xrmy T
e[ et I ) - K )
R\ By /4(x)
where we have assumed without loss of generality that Bi/s(z') C Byu(z) C

By )s(2'), by considering |z — 2/| < &, and where

K (y) = a(y/|yl)

~ Tyl
Notice that K is C*(B, \ Biys) by being quotient of C'* functions, and therefore

|K(z—z) - K(z—a')| < Clz —2'| for z—xz,z2—2" € B\ By,
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where C' depends only on n and ||a||¢e(gn-1). By homogeneity of K, for z € R"\ By 4,
1 z—x z—a
K g
|z — z| |z — x|

|Z _ :L‘|n+25
< C;| — ’|a
— |Z _ x|n+2s+a X L

|K(z—2) = K(z—2)| =

where we used that 2=%- € B, \ Bis.

|z—2|
In all we have that

|L¢(t7 .ﬁ(}') - L¢<t/7 I’l)‘ S C“(bHC%((_LO)xR") (lt - t/
as desired. O

=+ |z —2|?),

Finally, let us combine some of the results that have been obtained here to show
the following result: when the kernel of the operator is regular enough, we gain
2s — e spatial interior regularity. That is

Corollary 3.8. Let s € (0,1), and let L be any operator of the form (1.2)) with
bounds (1.4). Assume that

a € Ck+a<Sn71)7
for a € (0,1), k € N.
Let u be any bounded weak solution to (1.7). Then, if 2s + a is not an integer,
lull gzeisac((—1 0)xmy ) < C <\|U||L°°((71,0)xR") + Hf|!c§+a((_1,o)x31)> ;o (342)

for all € > 0 and for some constant C' depending only on €, o, n, s, ||al|cr+a(gn-1) and
the ellipticity constants (|1.4)).

Proof. Let 7 = n(x) be a cutoff function supported in By and such that n = 1 in

Bs/s. In the expression (3.36|) from the proof of Theorem 1.3 we can take incremental
quotients of order k£ 4+ « as in the proof of Corollary to find

[U]C§S_€+k+a((—2*25,0)><Bl/2) < 5[”“]C§S—€+’“+a((—1,o)ng)+
+C <H“||c;+k+°‘((—1,0)x31) + [ llerac10yxmy + 100 = L) (nu — U)”c’ya((_l,O)xBl)) -
Notice that, as in Corollary [3.7], we obtain

(0 = L) (nu — u)”cﬁa((—m)xBl) = || L(nu — U)HC”;JrO‘((—l,O)xBI) < [Jull oo ((-1.0)xrm),
and now the desired result follows as in the proof of Theorem [1.3] O

4. C*° REGULARITY UP TO THE BOUNDARY

In this section we start the study of the regularity up to the boundary. We will
first construct a supersolution with appropriate behaviour near the boundary, and
then we establish the C? regularity up to the boundary, Proposition [I.4]
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4.1. A supersolution. Let us begin with the following general result, which gives
a fractional Sobolev inequality for operators L of the form (|1.3))-(1.4)).

Lemma 4.1 (A fractional Sobolev inequality). Let s € (0,1), 2s < n, and L any
operator of the form (1.3))-(1.4), with spectral measure p. Then,
o dr
2 2
I e <€ [ [ [ 00— s@P o )

for some constant C' depending only on n, s and the ellipticity constants (1.4]).

Proof. This fractional Sobolev inequality is already known when the operator L is
the fractional Laplacian. In this case the right hand side is the Gagliardo seminorm
[l

Leé u)s call [f]ms ®n) the right hand side of . Using the classical fractional
Sobolev inequality and Plancherel’s theorem, it is enough to prove that [f] H: (R7)
and [f]gsmn) are equivalent seminorms in the Fourier side. This follows by noticing
that the Fourier symbol A(&) of L can be explicitly written as

A© = [ e oPuo)

(see for example [ST94]), so that

gy = | A©IF(©)Pde

Now, by definition of A\, A, the ellipticity constants in (|1.4), we have
0 < A€ < A(€) < AJef™.
Using that the Fourier symbol of the fractional Laplacian is |£]?* we are done.  [J

We now give a result regarding the eigenfunctions associated to an operator L in
a domain €. This will be used later to construct a supersolution.

Lemma 4.2. Let L be an operator of the form (1.3)-(1.4), and let Q@ C R™ be a
bounded Lipschitz domain. Then the eigenfunctions of the Dirichlet elliptic problem

are bounded in ). That is, if ¢p € L*(Q) is the eigenfunction associated to the k-th
ergenvalue g,

u = 0 in R™\ Q,
then,

1(n\?2
[oullzmon < O ) 64] 0y
where C is a constant depending only on n and s. Moreover,

lim )\kk’_% = Cg,

k—o00

for some constant Cy depending only on n, s, and the ellipticity constants (|1.4)).
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Proof. Let us begin with the first inequality. If n = 1, then L is a multiple of the
fractional Laplacian and the result is already known (e.g. [SV13| Proposition 4]
or [FR15]). If n > 2s, it can be proved doing exactly the same as Servadei and
Valdinoci do in [SV13] Proposition 4] for the fractional Laplacian case. To do so,
we use the fractional Sobolev inequality for general stable operators established in
Lemma (411

The second result follows from [FRI5, Proposition 2.1], which is a direct conse-
quence of a result from [Geil4]. O

In this section and what follows we will use the following notation
d(z) := dist(z,R" \ Q). (4.3)
Lemma 4.3 (Supersolution). Let s € (0,1) and let Q@ C R"™ be any bounded C'™!
domain. Let u be the solution to
ou—Lu = 1 mQ, t>0
u =0 mR"\Q, t>0 (4.4)
w(0,z) = 1 inQ.
Then, we have
lu| < C(to)d®, for allt >ty >0, (4.5)
where C(ty) depends only on ty,n,s,$2 and the ellipticity constants (1.4). The de-
pendence with respect to 2 is via |Q| and the CY' norm of the domain.

Remark 4.4. We call the O norm of the domain to the maximum p such that there
are balls tangent at every point from inside and outside the domain with radius p.

Proof. Notice that u(t,z) = ui(z) + ug(t, z) where u; solves

—LU1 = 1 in Q, t>0
{ w = 0 mR*"\Q, t>0 (4.6)
and uy solves
Owug — Luy = 0 inQ, t>0
ug = 0 in R"\Q, t>0 (4.7)

ug(0,2) = 1—wuy(z) in Q.
By the results in [RS14b] we have a bound for u; of the form
lup| < Cd°, (4.8)

where C' depends only on n, s, the C*! norm of  and the ellipticity constants (1.4]).
To bound uy we proceed as in the proof of [FRI5, Theorem 1.1] by expressing us
with respect to the eigenfunctions of the elliptic problem. Namely,

up(t, w) =Y updpe M,
k>0

where ¢ is the k-th eigenfunction corresponding to the k-th eigenvalue Ay, and uy
are the Fourier coefficients of uy(0, x). We are assuming ||¢||2() = 1 for all k € N.
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By the results in [RS14b] for the elliptic problem and Lemma we have
|6k (2)| < OMGkll (@) d () < ONFd(2),

where w = (%)2 and C' depends only on n and s. Therefore,

1
2
lug(t, z)| < d°(x ZukC)\ Mt for all € Q.

k>0

Using the exact same reasoning as in [FR15], this implies
lug(t, z)| < C(t)||uz(0, )| 2yd*(x),  for all z € .

The constant C' depends only on ¢, n, s, |€)|, and the ellipticity constants (1.4]). This
implies our result, since

lu2(0, Mr2e) < 10U (1 + wrllz=(e) < C
for C' depending only on n, s, |2 and the ellipticity constants (|1.4)). O

4.2. C° regularity up to the boundary. We begin this subsection by introducing
a definition that will be useful through this and the next section.

Definition 4.5. We say that I' is a C'! surface with radius pg splitting B; into QF
and €27 if the following happens:

e The two disjoint domains Q* and Q~ partition By, i.e., By = Qt U Q-.

e The boundary T':= Q" \ 0By = 9~ \ dB; is a C™! surface with 0 € T..

e All points on I' ﬂm can be touched by two balls of radii py, one contained
in O and the other contained in Q.

Under the previous definition, we will denote
d(x) = dist(z, Q7).
We will prove the following version of Proposition [1.4]

Proposition 4.6. Let s € (0,1) and let L be an operator of the form (1.3))-(1.4)).
Let T' be a CYY surface with radius py splitting By into QT and Q. Let u be any
weak solution to

Owu—Lu = f in(0,1) x QF (4.9)
u = 0 in(0,1)x Q. '
Then,
Jull 4 < C (IIfle=yxa+) + Nl 0,1)xrm)) 5 (4.10)

1 S
2l ([32]xByyz)
where C' depends only on n, s, pg and the ellipticity constants (1.4)).

To prove the previous proposition we will follow the steps of [RS14, Proposition
1.1]. We begin with the following lemma.
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Lemma 4.7. Let s € (0,1) and let L be an operator of the form (1.3))-(1.4). Let u
be any weak solution to (1.7) with f € L>*((—1,0) x By), and

Ko= sup sup R**u(t, )| z=5p)
te(~1,0) R>1

for some 6 > 0. Then, for any e > 0,
lell a5 (11 gy F 1loze((-0)xmi) < OB+ [ flle=(-ropemn)
where the constant C depends only on n, s, e, 0 and the ellipticity constants (1.4)).

Proof. Apply Theorem to @ = uxp,. Then, by an argument similar to the one
done in the proof of Theorem [1.3] it is enough to check

| L(u(1 = xB,))| Lo ((~1,0)xBy) < CKp.
This is immediate from the growth imposed by the definition of Ky, i.e.,
lu(t, )| < Ky (1 + |x|28_5) )
Thus, the lemma follows. U

We next show that the solutions u satisty |u| < C'd°.

Lemma 4.8. Let s € (0,1) and let L be an operator of the form (1.3))-(1.4). Let T’
be a OVt surface with radius py splitting By into QT and Q~, and let f € L>=((0,1) x
Q7F). Let u be any weak solution to (4.9). Then

u(t, )] < Clto) (I fllLoe(oayxary + l[ulleo.1)xrn)) d°(2),
for all x € By, t > to > 0, and where C' depends only on to,n,s,po and the
ellipticity constants ([1.3[)-(L.4]).
Proof. Pick any point z € I'N B /3, and consider the ball B (*) tangent at z and inside
Q™ with radius min{po, }. Then construct the supersolution from Lemma in

the domain B, \ B(®). This yields the desired result for points near z with a constant
C that does not depend on the z chosen. Repeating the argument for any point in
I' N By we are done: indeed, for any z € By 4 we apply this to z, € I' N By, such
that d(z) = dist(z,, x) and the result follows. O

As a consequence of the previous bound we find the following

Lemma 4.9. Let s € (0,1) and let L be an operator of the form (1.3))-(1.4). Let T’
be a CHY surface with radius py splitting By into QF and Q~, f € L*>((0,1) x Q)
and u be any weak solution to (4.9)). Then, for all xo € Q* N B4, and all R < @,

[u] ) < C(IIf I yxa+) + 1wl o (0,1)xrm)) , (4.11)

where ty is such that }L <ty — R* < t; <1 (making R smaller if necessary). The
constant C' depends only on n, s, py and the ellipticity constants (1.3])-(1.4]).

oL (-4 )Ty
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Proof. Notice that Br(zo) C Bag(zo) C QF. Let u(t,y) = u(R*t+t;— R*, x9+ Ry),
so that

Oyt — Lt = R* f(R*t + t; — R* 29 + Ry) (4.12)
for x € By,t > m
U= TR
We define
Co = || fll Lo (0,)xt) + [[w]| Lo (0,1 xR,

and

1 1 9s

for Tr := JEE (Z_l + R —tl) .

From Lemma [4.8 with ¢, = I we get

||a||L°°((TR,1)><Bl/4) < C16(0}%5- (413)

Now note that, by Lemma [4.8] for all y € R",
lu(t,y)| < CCud*(zo + Ry) < CCoR*(1 + |y|°) for t € (T, 1).

Thus, we obtain
sup supr2/2||a(t, )| L (m,) < CCoRE. (4.14)
te(Tg,1) r>1
Using Lemma [4.7| with € = s and expressions (4.12))-(4.13))-(4.14]) we obtain

+ ||a] cs((3.1)xBra) < C(tg)CoR?,

wl| 1 _

| Hcé((g,l)wm)

where we have used that, under these hypotheses, T < 0.
Finally, use that

R™[u) 1, e L Brya(x0))’
| ]ci; ((3:1)xBusa) | ]c;%; ((t1=3R% 1) xBp/a(w0))
to get
ul 1. <O,
[ ]Ct%; ((tl—%R257t1>XBR/4($0)) - ’
By a standard covering argument, we find the desired result in Br(xg). O

We now prove Proposition [4.6]
Proof of Proposition[{.6 Since

< PR
[“]cé;([;l]x@mgln)) < Wleg([3a) <@, ) + [u]cé([%,l]xmimgl )
we can treat these two terms separately.
For the first term we need to show
lu(t, z) — u(t, =
|z — '3

) < CC,, (4.15)

for any t € (%, 1), z,2’ € QY N By, and constant C' independent of ¢;, where again
we define

Co = | fll (0, 1yx+) + [[wllzoe (0,1 xRn)-
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Let 74 = min{d(z),d(x")} and R = |x —y|. We now separate two cases according to
the values of r; and R:
If 2R > ry, from Lemma with ¢y = 1/2 we have

lu(t,z) —u(t,z")| < CCy(ri+ (R+149)°) < CCyR?
so that (4.15) is fulfilled.

On the other hand, if 2R < r4 and x € By, then Byg(x) C Q and therefore,
from Lemma e would get [u]cs(By@) < CCo. This can be extended for x € By,
using a covering argument. Thus, is proved.

For the second term in the seminorm we want to show

t —u(t
lutt, 20) = ult' 2o)| _ (4.16)
Ik
for any xg € QY N By, t,t' € (%, 1). Again, this can be extended to Q% N By, by
a covering argument. Notice that we can suppose that |t — #'| is small as long as it
is independent of xy. Let 7 € Q to be chosen later, and observe that
jult, z0) — ult',z)| <2 sup ulta o) — u(te, )| + u(t, 7) — u(t', 7)|.
te(3,1)

By (4.15]) we have
sup |u(ts, xo) — u(ts, z)| < CColag — Z|°.
tee(3.1)

Moreover, choosing = such that |t — /| < d(i"T)QS, by Lemma 4.9 we have

u(t, 7) — ut', )| < CColt —t'|2.
Therefore, choosing  such that
eolzo — Z| < |t — ']z < 272:d()
follows. Notice that such z and ¢y > 0 independent of zq, T, t and ¢’ always
exist if |t —#'| is small enough, depending on ¢y and the C*! norm of the domain. [
Proposition [4.6] directly yields Proposition [I.4]

Proof of Proposition[1./l The result follows combining Proposition with the in-
terior estimates of Theorem [I.3] O

We next present an immediate consequence of Proposition [4.6|analogous to Lemma
but for the case with boundary that will be useful later (and that is why we con-
sider the temporal domain to be (—1,0) now).

Corollary 4.10. Let s € (0,1) and let L be an operator of the form (1.3))-(L.4).
Let T' be a CY! surface with radius py splitting By into Q" and Q~. Suppose that

feL>((-1,0) x Q%) and u is any weak solution to

{&u—Lu = f in(=1,0) x QFf

u = 0 in(-1,0)xQ". (4.17)
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Define

Kog= sup supR‘s_QSHu(t,-)||Loo(BR),
te(~1,0) R>1

for some 6 > 0. Then,

+ lul

— < O(K co((— .
lell gy gy T Wells(-popamis) < CKo+ I limropsan)

where C' depends only on n, s, py,d and the ellipticity constants (1.4]).

Proof. The proof is the same as the proof of Lemma [£.7, using Proposition 1.6
Indeed, define u = uxp, and notice that

| L] oo ((—1,0)xBy) < Lt oo ((—1,0)xBy) + | L (w(1 = XB,)) | zoo((~1,0)xBy)
< | fllzoe((=1,0xa+) + C Ko,
which follows from the growth imposed by the definition of K. U

4.3. Liouville-type theorem in the half space. We now prove a Liouville-type
theorem in the half space for nonlocal parabolic equations.

Theorem 4.11. Let s € (0,1), and let L be any operator of the form (1.3))-(1.4)).

Let u be any weak solution of

O —Lu = 0 in (—o00,0) x R}
{ u = 0 in(—00,0) x R", (4.18)
such that
1
[ult, )lzesry < C(RT+1) for B2 [t]>,
for some v < 2s. Then,
ult, 2) = Kz
for some constant K € R.
Proof. We proceed as in the proof of [RS14b, Theorem 4.1].
Given p > 0 define v,(t,z) = p~u(p*t, px). Then,
0w, —Lv, = 0 in (—o00,0) x R}
{ v, = 0 in(—o00,0) x R”, (4.19)
and for R > |t|2,
[0p(ts Moo (mry = P Jw(p*t, )| Le(B,m) < pT7C(L+ (pR)) < C(1+ RY) (4.20)

for p > 1.
Hence, denoting v, = v,xp,(z), we have that 7, € L>((—1,0) x R") satisfies

{amp—mp = g, in(—1,0)x Bf
1,0

T, = 0 in(~1,0)x B, (4.21)
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for some g, € L*((—1,0) x B;"), with 195/l oo ((—1,0)x57) < Co, for some constant Co
independent of p > 1. The constant Cj depends only on the constant C' in (|4.20)).
By Proposition [4.6] we find

< CCh.

||vp||C%;((72_2570)X31/2) — ||vp||C%;((72_25’0)X31/2)

Therefore, for p > 1

—s5 2s

= t

Mct%,f(<72—28p2s,o)pr/2) plulp™tp x)]cﬁf(ez-%p)wl/g)

= 57 < ’7_5‘
p [UP]C,%;((—2—28,0)x31/2) -~ OCOp

Now, given h € By with h, =0, and 7 € (—1,0) consider
u(t+ 71,0+ h) —u(t, )

wh(ta .Z') - 7_% + |h|5 )

3= we have that

so that, by the previous result, whenever R > |t
[wn(t, )l zeeBr) < CLR7™ +1).

By linearity 0,ws, — Lw, = 0 in (—00,0) x R} and w = 0 in (—o00,0) x R™. We can
then apply the previous reasoning with u replaced by wy, to finally reach that

[wh]c’tl’{f’s((_2725p25’0)><Bp/2> S CCOp’Y_287 fOI p Z ]_

Since 2s > v, making p — oo we find that wy, must be constant. But since w, = 0

in R™ then
wp, =0 in (—o0,0) x R™.

This implies that for all h € B; with h, = 0 and for all 7 € (—1,0), then
u(t + 7,2+ h) = u(t,z). Thus, u is constant in time, and by |[RS14b, Theorem
4.1] we get u(t,x) = K(x,)% as desired. Alternatively, we could end the proof by
noticing that

u(t,z) = u(z,)
for some 1D function u, and proceeding as in the final part of the proof of [RS14b)
Theorem 4.1]. O

5. REGULARITY UP TO THE BOUNDARY FOR u/d*

In this section we will prove Theorem We begin by introducing a definition
that will be recurrent throughout the section.

Let s € (0,1) and let L be an operator of the form (L.3)-(L.4). Let I be a C*!
surface with radius py. Under the notation in Definition 4.5, and when not specified
otherwise, in the whole section we will define @ = u(x) as any solution to

Lu = 1 inQF
u = 0 inQ~, (5.1)
0 < u < Co in R™ \ Bh
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where ¢5 is a constant depending only on n, s and the ellipticity constants.
Notice that, under these circumstances, we have

0< ngs <u< Clds in Bl/g (52)

where ¢y and c; are constants depending only on n, s, py and the ellipticity constants

. The first inequality in appears, for example, in [Ros15, Lemma 7.4], while

the second one is a consequence of the C* regularity up to the boundary for this

elliptic problem (see for example [RS14b, Proposition 4.6] or the previous section).
The result we will need before proving Theorem is the following.

Proposition 5.1. Let s € (0,1) and v € (s,2s). Let L be an operator of the form
—, let T be a CH' surface with radius py splitting By into QT and Q~, and
let w be a function satisfying .

Let u be any weak solution to

{ 8tu—Lu =

u =

S~

n(—1,0) x QF
1,0

Zn (—1,0) x Q™. (5-3)

and define
Co = |lull oo ((=1,0)xrny + | fll Lo ((=1,0)x2+)-
Then, there is a constant Q) € R with |Q| < CCy for which

[u(t, 2) = Qu(x)| < CC (Ja" + I

7) in (—1,0) x By.
The constant C' depends only on n, py, s, v and the ellipticity constants (1.4)).
In order to prove this proposition we will need the following lemma.

Lemma 5.2. Let s € (0,1), v > s, and u € C((—1,0) x By). Let L be an operator
of the form (1.3)-(1.4) and let T be a CY* surface splitting By into Q and =, with
radius py. Let @ be a solution to (5.1). Define

¢r(7) := Qu(r)ulz),

0 _
s u(t, x)udxdt
Q.(r) == argmm/ / u(t, ) )2 dedt — f—r2 fBr (t,z) '

2s 752
r fBr u?dx

Assume that for all v € (0,1) we have that
| — & || oo ((—r2s,0xB,) < Cir”.
Then, there is @ € R satisfying |Q| < C(Cs + ||u|| Lo ((—1,0)xB,)) such that
lu — Qul| oo ((—r25,0)xB,) < CC7

for some constant C' depending only on v, n, s, po and the ellipticity constants (1.4]).
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Proof. Notice that by (5.2)) we have
||| oo B,y > er® for r € (0,1), (5.4)

where ¢ is a constant depending only on n, s, py and the ellipticity constants ((1.4]).
On the other hand, notice that

||| oo (= 1,0)x B 18] oo (1)

|Q(D)] < .
||U||%2(Bl)

By (5.2) again [|@||z~(p,) < C, and since there is some ball of radius py touching
the origin inside Qt where @ > ¢1d*, we have that ||@||7. () = €', for some constants
C, C" depending only on n, s, py and the ellipticity constants ((1.4). Thus

1Q«(1)] < Cllu|poe((=1,00xB1) (5.5)

for some C' depending only on n, s, py and the ellipticity constants ((1.4)).
Using ([5.4) and (j5.5)), the proof is exactly the same as the proof of [RS14bl, Lemma
5.3]. O

We now prove Proposition[5.1] The proof is by contradiction, and uses some ideas
from [RS14bl Proposition 5.2].

Proof of Proposition[5.1. Assume that there are sequences 'y, O, Q. fi, ux and
L, satisfying the hypotheses of the proposition. That is,

o I, is a CM! surface with radius po splitting By into Q; and ., and we
assume without loss of generality that the normal vector to I' at the origin
is e,,.

e [ is of the form ([1.3))-(1.4]).

o [lurllzoe(—1,0)xrm) + [[frll oo (1,0 x2) < 1-

e uy; is a solution of

{ 8tuk — Lkuk = fk in (—1,0) X QZ_

w = 0 in (=1,0) x Q. (5:6)

In order to reach a contradiction, suppose that the conclusion of the proposition
does not hold. That is, for all C' > 0, there are k and u; for which no constant
Q@ € R satisfies

un(t, ) = Qug(a)] < C (|2 + [t]F) in (~1,0) x By, (5.7)
where 1, solves
u = 0 inQ, (5.8)

0 < @, < ¢ inR"\ By.

We will divide the proof by contradiction into four steps.
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Step 1: The blow-up sequence. Notice that, by Lemma [5.2] and the negation

of (5.7)), we have

sup sup 7 |[ug — G|l oo ((=r2e,0)xB,) = OO, (5.9)
k r>0
where
Prr () = Qu(r)ty, (5.10)
0 _
- e fBr ug(t, ) updrdt
Qr(r) == argglelg/ / up(t, ) — Qu)* dadt = [ s :

We define the following monotone decreasing function in 7,
9(7") = Sl;p sup (T/)_VHUk - ¢k,r’HLOO((—(T’)QS,O)XBT/)-
r'>r

Notice that 8( ) < oo for r > 0and 6(r) 1 co as r | 0. Pick a sequence 7y, ky, such
that r,,, > = and

0(1L/m) _ 0(ry)
2 T2

Notice that 7, | 0 as m — oo. To simplify notation we will denote ¢, = ¢r,, r,.-
We now consider a blow-up sequence

(5.11)

T?’Tl’yHukm - stm,rm HLOO((_T%szO)XBTm) 2

Uk,, (7“72,1875, me) B ¢m<rmx)
o0 (Tm)

In the next step we analyse some properties of this blow-up sequence.

U (t, ) =

Step 2: Properties of the blow-up sequence. By the optimality condition for
least squares we have that, for m > 1,

/ (1 /B it 2, ()t = 0 (5.12)

vl Lo (—1,0)xB1) = 1/2, (5.13)

which is an immediate consequence of the expression ((5.11)).
In addition, for all k£ we have that

|Qi(2r) — Qi(r)| < Cr*70(r),

for some C depending only on n and s. Indeed,

Moreover,

H(bk 2r — ¢k,rHL°°(BT)

|Qr(2r) — Qr(r)] =

||Uk||L°0(BT)
< Cr™° ([|dr2r — |l oo (= @2r)25,0)x Bar) + 1Pk — k|| Lo ((—r25,0)xB,))
<Cr*((2r)70(2r) +170(r)) < Cr7*0(r),
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where we have used that by (5.2)) for r < 1,

|t || oo (B,) > cor®

for ¢q depending only on n, s, py and the ellipticity constants (1.4)).
Thus, for R = 2V we have

N-1

7 Qr(rR) — Qr(r)| 0i(1-5) (297" |Qu(2717) — Qu(277)]
00r) = Z 50
< CN_l 0169 92T) - coNes) _ s
T = o(r) —

for some C depending only on n and s.
Using this, we bound the growth of v,,,

1
[l oo (2 0)x B) = 7%9—(7“m)||ukm = Qe (1) || oo (- 120125.0) % By )
R _
= muukm = Qo (Brim) Uy, || oo (— R25125,0)x Bry) +
1 s
+ m|@km (Rrm) — Qk,, (1) | (Rrim)
RY0(Rry,)
—  — + CR".
— O(rn) +

We have used here that by ((5.2))
@] Lo (p,) < car®

for some constant ¢y depending only on n, s, py and the ellipticity constants (1.4]).
Therefore, we have the following growth control on v,,,

va|‘Loo((,R2s70)><BR) S CR’Y fOI‘ R 2 1. (514)
Finally, notice that v, satisfy
7,,23—7 )
Oy (t, ) — Li,, vm(t, ) = 92; ) (fiom (T2t ) — Q,, (7)) (5.15)

in (—R*,0) x Qf .,
for all 0 < R <r_! and

Of,, ={r € Bp:rpz € Q }.

Step 3: Convergence properties. We next show that there is a subsequence of
vy, converging to some function v.
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Notice that the right hand side of (5.15)) is uniformly bounded with respect to m.
Indeed,

fi)r%f |ukm(t x)| g, dedt  Cey fB ds( )Cst( )dx
|ka(rm>| S - 28 S 28 S C
r2s [ 5. u; dr Co f d
for some constant C' depending only on n, s, py and the elhptlclty constants ((1.4)).
Here we used ((5.2)) and also that
sup |ug(t,z)| < Cd’(x),

te(—r2s,0)

for r small enough, which follows by the C* regularity of Proposition
Hence, using also that v < 2s and 6(r,,) — oo, we find
7,,25—7

|1 Osvm (t, ) — Lkmvm(t,a:)HLoo((,Rgsvo)XQ;’m) < m —0 asm — oo, (5.16)

Thanks to the control (5.14]) and the bound from (5.16|) we can apply Corollary
with § = 2s — v > 0 on domains of the form (—R?* 0) x Bg, to obtain that

< C(R), (5.17)

H mHCE ( —R2%/2,0)xBp/2)

for some constant C' depending only on R, n, s, pg and the ellipticity constants .
It is important to highlight that the dependence is on py independent of r,,, and this
is because the domains of the form Q. are C' surfaces with radius po/7m > po.

Therefore, by the Arzela-Ascoli theorem there is some subsequence of v,,, converg-
ing to some function v uniformly over compact sets, since (—R?*,0) x B can be
made arbitrarily large.

On the other hand, recall that from the compactness of probability measures on
the sphere we can find a subsequence of {Ly, } converging weakly to an operator L
of the form —.

Now, consider any point x € R’}. The normal vector to I';,, at the origin is e,
and there is a ball of radius pg/r,, contained in Qtl tangent to I'y,, at the origin.

Therefore, for m large enough we will have that x G Q+ eventually, and the same

will happen for any neighbourhood of z inside R} . Slmﬂarly, if x € R", for m large

enough we will have v,,(t,z) = 0 for any ¢ € (—r2,0). By Lemma , we have that

up to a subsequence v,, converges locally uniformly to some v satisfying
{ Ow—Lv = 0 in(—00,0) x R?

v = 0 in (—o00,0) x R”, (5.18)

for some operator L of the form (1.3)-(1.4). Furthermore, by uniform convergence
and from (5.13)-(5.14)), we have
||U||Loo((_]_70)><Bl) Z 1/2, (519)
and
||U||L°°((—R25,O)><BR) S CR" for R Z 1. (520)
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Finally, observe that M converges uniformly in By up to a subsequence to

Q(xy,)3 for some @ € R™. _Igdeed, by [RS14bl Proposition 5.2], for each m € N and
v € (s,2s) there is some @), such that

\uy,, () — Qm(:cn)ﬂ < C|9(:|7'7 for x € By, (5.21)

where C' depends only on n, s, pg,7’ and the ellipticity constants (1.4]). Moreover,
thanks to ((5.2)), )
0<coy<Qpn<c forall meN, (5.22)

where the constants ¢y and ¢; are the same as in (5.2)). To check this, write for
example

cod® = Qu(@n)’. < |k, () = Qu(za)] < ||
Now dividing the expression by |(z,)|* and taking the limit for » = he, and h | 0
we would get ¢g < Q.. It similarly follows @,, < ¢;.

Rescaling ((5.21])),

Uk, (T T = I_
sup %) — Qm(x,)5 | <Cr),™° = 0asm — oo,
reB; Tm
and up to a subsequence we have that
Uy, (rm)

S
Tm

for some @ fulfilling the same bounds as Q,,, (5.22)).

— Q(z,)%. uniformly in By (5.23)

Step 4: Contradiction. By considering the expression (5.12)) in the limit, and
ﬁkm(T‘mllJ)

using — Q(2,)% uniformly in By, we have

/ i /B | v(t, 7) ()% dadt = 0. (5.24)

On the other hand, by (5.18))-(5.20) we can apply the Liouville-type theorem in
the half space, Theorem [£.11] to v. Therefore, we have

v(t,x) = k(z,)%, for some k € R.

By (5.24), v = 0. However, this is not possible by ([5.19), and we have reached a
contradiction. O

Before proceeding to give the proof of Theorem [I.5] we state the following use-
ful lemma. Thanks to this lemma, we can replace u by d° in the expression of
Proposition [5.1}

Lemma 5.3 ([RS14D]). Let T be a CH' surface with radius py splitting By into QF
and 2. Let u be a solution to (5.1)), and let d(z) = dist(x, 7). Let zg € By such
that

dist(zo, I') = dist(xg, 2) =: 2r < po.
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Then, there exists some Q = Q(z) such that |Q(z)| < C,
1 — Q|| oo (B, (o)) < CT*°7, (5.25)

and B
[ﬂ/ - st]ciié(Br(ﬁo)) S CT’S, (526)

for some constant C' depending only on n, s, €, po and the ellipticity constants (1.4]).
Moreover,
(A (B (@oy) < CT17 (5.27)

for some constant C* depending only on pyg.

Proof. The third expression ([5.27)) is in [RS14bl Lemma 5.5, while the first two
expressions, ([5.25)-(5.26)), appear in the proof [RS14b, Theorem 1.2]. O

Finally, we can proceed with the proof of Theorem [1.5] We will prove first the
following proposition, which is essentially the same but assuming 0 € 0f2.

Proposition 5.4. Let s € (0,1), and let T be a CH! surface with radius py splitting
By into QF and Q™. Let u be a weak solution to

Owu—Lu = f in(=1,0) x QF
{ u = 0 in(-1,0)xQ". (5.28)
where L is an operator of the form (1.3)-(1.4]). Let
Co = [[ull oo ((—1,0)xrn) + | fllzoc((—1.0)x02+)-
Then, for any e > 0,
—€ 1 n 5 € o R < .
lllet(-s0pmim) T/ lop-soms( Cyope@inn, wy = C0 629

where the constant C' depends only on €, n, py, s and the ellipticity constants ([1.4]).
Proof. We may assume that

||| oo ((—1,0)xr7) + [ fll Lo ((—1,0)x+) < 1.

Also, inside €2 the result follows from the interior regularity, so we only need to show
the estimates in QF N {z : d(z) < po}.

Pick a point zy € BysNQTN{z : d(z) < po}, and consider z € T' minimizing the
distance to xz, i.e.,

2r := dist(xg, ') = dist(zo, 2) < po. (5.30)

During the proof we will assume that r is as small as we need (namely, 47%* < 1), as
long as it does not depend on . Under these assumptions B,.(xg) C Ba,(x9) C QF
and z € By, since 0 € I'.

Let @ be the solution of satisfying « = 0 in R™ \ B;. By Proposition we
have that for each ty € (—1/2,0) there exists some Q = Q(to, 2) with |Q| < C for
which

s—e 1
lu(t,x) — Qu(z)| < C <|x — 2B |t - t0|227> in (—§ + to,t0> x R, (5.31)
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where C' is a constant depending only on n, pg, s, € and the ellipticity constants .
We have used here Proposition on balls of radius 1/2 around each z € I' N By 5.
Notice that, u restricted to these balls satisfies an equation of the type inside,
and is bounded outside by ¢y, so that Proposition [5.1| applies.

We will now divide the proof in two parts, concerning respectively the regularity
for u/d® and the (1 — €)-temporal regularity for w.

Step 1: Regularity for u/d*. To begin with, note that there is some K = K (¢, 2)
such that |K| < C and

||u — de||Loo((fTQS#»to,to)XBr(Io)) < Cr¥—e. (532)

Indeed, this follows combining ((5.31]) and (5.25)), and assuming r small enough.
On the other hand we also claim that

< Cr?, (5.33)

1_ e s—e
C2, 227 ((=r2s+to,to) X Br(20))

for any ty € (—%, O). Suppose also that it is always true that —1 < to—1r2* < tq <0,
making r smaller if necessary. The constant C in — depends only on
n, s, €, po and the ellipticity constants .

To see define the following function

v (t, ) == r S u(r®t + to, rx + 2) — rQu(rz + 2). (5.34)
Notice that by (5.31)) we have the following bound in (—2%,0) x By(xy),
[vr (| oo ((—225 0y x By) < CT°7F,
and that by (5.31]) we have the following growth control for R > 1,

sup v (t, )| poe(Br) < Or° R* . (5.35)
te(—2,0)
Moreover, v, solves
O, — Lo, = 1° (f(r**t + to,rx + 2) — Q) in (—2,0) x Ba(2p), (5.36)

To—2

for zy = , and 7 small enough so that the domain in ¢ contains (—2,0). Us-
ing the interior estimate in Lemma [4.7] and the bounds on ), we obtain that
[vr] < Cr* ¢, From this it follows that

e — Qu] 1., . =rv] 1.
C2, 257 ((—r?+to,t0) X Br(x0)) G2, 27 ((-1,0)xB1(<0))

s—e€

Ct%,;i’ ((—1,0)x B1 (200))
S Cr?sfe’
(5.37)
and so we get the desired result, (5.33)), by combining this expression with (}5.26]).
Finally, for any xy, x5 € B,(1g) and any t1,ty € (—1r% + to,tg)
u(tl, .131) _ U(tg, .%'2) _ (u — de>(t1, l’l) — (u — Kd5><t2,$2) i
d*(x1) d*(x2) d*(x1)
+ (u — de)<t2, Z’Q)(dis(.%l) — dis(l’g)).
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Now, by and using that r and d are comparable in B,.(zy) we have that
|(u — Kd®*)(t1, 1) — (u — Kd¥)(ta, x2)]
d* (1)
By (5.32)) and (5.27)),
lu — Kd®|(ta, x2)|d *(x1) — d *(xq)| < Clay — zo]"F,
we finally get that

S C <’.§C1 — IQ‘SiG + ‘tl - tz’éii) .

w/d?] 5. <C

C2, 2" ((—r25+to,t0) x Br(w0)) —

for all such balls B,.(xg). The bound

lu/d|| 3- g <C

C2TET((=1,0)x (@ NBy ) T

now follows the same way as in the proof of Proposition

Step 2: O} ¢ regularity. Let us now prove the bound for [u ]Cl .

We begin by noticing that applying Lemma |4.7| to the Solutlon v, of we

have [vr]ctlfg,zsfe(( 1.0) B () < Cr*~¢, where v, was defined by - Rescahng,

we find "

25—6[

¥ u — Qﬁ]cl’ < 2 e =r°lv,] 1o < Cr* e

527 (<125 4t0,t0) X By (20)) CrL BT (L)X Bu(w) =
(5.38)

From here, we deduce

[u — Q(t(), Z)ﬂ] I_Z 2s5—e < Ca (539)

c, ((=r2s+to,to) x Br(z0)) —

where we will from now on explicitly write the dependence of (), and we remind
that r depends on z,. Notice that from ([5.31)),

u(to,2*)  ulto, z).

T et a(z*) " oa(z)

This last expression makes sense pointwise since the function u/@ is continuous up
to the boundary 9Q* N By, =1'N By, so we can take the limit.

Indeed, we already proved that ||u/d? < C, and from

H et ((—3:0)x(@FNBy )
[RS14b, Theorem 1.2] we know ||a/d®|| 1_ . ,_. _ < C: combining

C2 BT ((<3.0)x(@FNBy )
both expressions we obtain

< (.
||U/ HCQ*XS E((fé’o)x(QTﬂBl/Q)) o

In particular, for any fixed z on the boundary,

[Q(2)] 13- <C, (5.40)

Ct% T (=10) T
where the constant C' does not depend on the point z of the boundary inside B ;.
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Now we want to show, for any point y € By4 and t1,t5 € (—%, 0),

€

[u(ty, y) — ults, y)| < Clty — to| "2,

for some constant C' depending only on €, n, s, pg and the ellipticity constants ((1.4)).
Notice that to see this we can suppose that |t; — ts| is as small as we need as long
as its value does not depend on y. Let us consider z such that

dist(y, I') = dist(y, 2) < po.

Notice that we can also assume that |y — z| is as small as we need, since the interior
regularity is already known.

If |ty — 1] < 27%|y — z|*, then by (5.39) we obtain the desired result. Assume
now that
[ty —t1| > 27|y — 2. (5.41)
Let y to be chosen later, satisfying
dist(g, ') = dist(g, 2),
i.e., in the line passing through y and z.
Define y = 2755 + (1 — 27%)y, so that yo = ¥, Yoo = y. Define also

which will be useful for points x in the segment between y and y. With all this we
can bound the following expression,

[w(ts,y) = wts,y)l < D Jwlts, yrsr) — wlts, g+

k>0
+ Z [w(t2, Y1) — wtz, yu)| + [w(ts, ) — w(tz, y)]
k>0
<2 Z Clyrer — g~ + lw(ts, §) — w(tz, §)|
k>0
= 2Cly —g*~> 27 *IC u(ty, g) — w(ts, )]

k>0
< Cly =g+ hw(ts, 5) — w(tz, 9],
Here, we used that
Yre1 — y = 27D (y — p),
and therefore, in each term of the sum we can use the estimate . On the other
hand

lw(ty, y) —w(te, )| < |ulty,y) — Q(t1, 2)u(y) — (u(te, ) — Q(t1, 2)u(y)) |+
+1Q(t1, 2) — Qt2, 2)|u(y).

We take g such that
Ity — 1] < 27%|y — 2|, (5.42)
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so that the estimate in ([5.39) is valid. Considering (5.40|), we have
w(t1,§) — w(ts, §)| < Clts — 6|5 + Oty — 1|2~ 5 a(p)
< Clty — 1'% + Clty — ty|77%

y—zl%
where in the last inequality we have used (5.2)). Hence, using |y — z| > |y — y|,

y—z).

We now impose that 2%y — 2|?® < |ty — t;| for some €y independent of y,¥,t; and
to, and we get

[w(ts,y) — wts, )| < CF — 22+ [t — 1o 75 + [t — 01275

w(tr,y) — w(ts,y)| < Clts — t,|'~%
Thus, we take ¢ such that

% <27y — 2.

cly — 2| < |ta — 14

This is always possible 1f 60 and |ta — 1| are small enough depending on s and py.

Finally, from (5.40} - and ( -
u(ty, y) — ulte, y)| < [w(ty, y) — wtz, y)| + Q1 2) — Qt2, 2)|u(y)
< COlty — 1|5 + Clty — ty|7 7%
< Clta — t1|17i7

y — z|*

as we wanted to see. O
We finally give the:

Proof of Theorem[1.5. As in the proof of Proposition [[.4] combine the result in
Proposition with the interior estimates to get the desired result. O

Remark 5.5. In a future work by the second author and Serra the regularity results
for the elliptic problem will be extended to C** domains, for a € (0, 1).

In Section 4 I the only steps where it was used that the domain is C*! is in the
construction of supersolutions in Lemma [£.3] and in Lemma 4.8 If the solutions
to the elliptic problem with a C'%® domam were bounded by d®, namely . then
Proposition would be true for C** domains, with the constant depending on «
too. On the other hand, the argument done in Lemma can be easily adapted to
C1 domains.

In Section [5] there are two steps where we used the C™! regularity of the domain.
Namely, to obtain the bounds ) from [RS14b], and to say that M converges
uniformly in By as r | 0 to Q(a:n 1 in - Again, if these results Were true for a
domain C' with a € (0, 1), then the regularity up to the boundary found for u/d®
would also be true for this class of domains.
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6. THE DIRICHLET PROBLEM

In this section we prove Corollary [I.6] First, we give the following lemma.
Lemma 6.1. Let s € (0,1) and let Q C R"™ be a bounded C*' domain satisfying the

exterior ball condition. Let u be the solution to

ou—Lu = ¢ mQ, t>0
u =0 mR"\Q,t>0 (6.1)
w(0,2) = wuy in €,

for some constant ¢y > 0. Then, we have
lu| < C(to)(||uol|L2) + co)d®,  for all t >ty >0, (6.2)

where C(ty) depends only on tg,n, s, and the ellipticity constants (1.4]). The de-
pendence with respect to Q2 is via |Q| and the CY' norm of the domain.

Proof. Proceed exactly as in the proof of Lemma O
And now we can prove Corollary [1.6]

Proof of Corollary[1.6, For the first part, cover Q by a finite number of unit balls
and apply Theorem [T.3]to the interior balls and Proposition [4.6] to balls with center
on the boundary, to get

||U||Ct%’;((%,l>x§) <C <||U’||L°°((i,1)><ﬂ) + Hf”LOO((i,l)XQ)) : (6.3)

Similarly, applying Proposition [5.4] we get

lullgz=<((2.1)xa) T llu/d Hci_i,s_E((%’l)xﬁ) <C (HUHLOO((%J)xQ) + HfHLoo((%,l)XQ)) :
(6.4)
On the other hand, by Lemma |6.1| with co = || || Les((0,1)x0) and t = to = 1/4,

ull oo ((2,0)x0) = € (HU(1/4,~)HL°°(Q> + HfHLoo((i,l)mQ
< C (Jlu(0, )2 + [1f L= o,nxe) -
Finally, combining the previous expressions and rescaling the temporal domain

appropriately we get the desired result.
For the second part it is enough to combine the previous result with the interior

1
regularity estimates ([1.8]). This can be done as long as a < s, from the Cﬁ;
estimate. O

Let us finish by proving a corollary with sufficient conditions on f for u to have
classical derivatives with respect to time ¢ up to the boundary.
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Corollary 6.2. Let s € (0,1), let L be any operator of the form (1.3))-(1.4)) and let
Q be a bounded CH* domain. Let f € C2((0,1) x Q) for some § > 0, ug € L*(Q),
and let u be the weak solution to

ou—Lu = f inQ, t>0
w =0 inR"\Q, t>0, (6.5)
u(0,) = wy inQ, t=0.

Then,
18eull oo ((1.1)x) F 1t oo ((1.0) ) < € <||uo||L2(Q) + ||f||c§((0,1)xﬂ)> ,  (6.6)
where the constant C' depends only on §,n,s,Q and the ellipticity constants (|1.4)).

Proof. We proceed as in Corollary by taking incremental quotients in ¢,

uf(t+7,7) = u(t +, ’a;)|6— u(t,x)’ 7t 1) = ft—+r, ?’5_ f(t,z)

for some 7 > 0 fixed. Notice that

1
Owuy — Luj = ff in Q,t>1.

Note also that
15 e (2 471)x0) =€ ([ﬂcﬁ((i,l)xﬂ)) )
e (24m)x) < € (Ileg((2.0)x)) < € (luollzzge + 1F (o)

where in the last inequality we have used the first part of Corollary [1.6]
On the other hand,

T
22 [l (1)) 2 Ol (3.0

(see, for example, [CC95, Lemma 5.6]). Combining the previous results with Corol-
lary [1.6] we obtain the following bound,

Jullegs-«((yem) < € (Nuolley + 1 lesanyeny) - (6.7
Using that HLuHLm«%J)XQ) < H(’)tuHLoo«%’l)Xﬁ) + Hf|]Loo((%71)x§), we are done. [J

We finally give a corollary on the higher regularity in ¢.

Corollary 6.3. Let s € (0,1), let L be any operator of the form (1.3)-(1.4) and let
Q be any bounded C*' domain. Let f € CF((0,1) x Q) for some k € N, ug € L*(),
and let u be the weak solution to (6.5)). Then, for any 6 > 0

lllo ((2.1),m) < € (ollzziey + 1 ooy ) - (6.8)
where the constant C' depends only on 0, k,n, s, and the ellipticity constants ((1.4]).
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Proof. If k = 1, the result is a consequence of the previous statement, Corollary [6.2]
Now we proceed by induction.

Suppose it is true for £ = ¢, and let us check we can obtain the same for ¢ + 1.
Notice that this means v, := Gt(q)u is bounded and therefore classically defined, and
it solves

{ Owg—Lv, = 09f inQ, t>0 (6.9)
v, = 0 in R"\ ©, t >0. '

Using incremental quotients, as in the proof of Corollary [6.2], we obtain

100l e 1.0y 6y < C (1174 Maeior + 10 fllep o) - (6.10)

From the induction hypothesis

eall e 1.0)m) < € (lollzze) + 1 leg-150my )
and combining the previous two expressions we are done. O

Remark 6.4. Thanks to the previous result, if f € C7° up to the boundary then the
solution to the Dirichlet problem is automatically C;° inside €2. As explained in the
introduction, this does not happen in space for general stable operators.

Still, if f € C° and the kernel satisfies a € C*°(S™"™1), then by Corollary the
solution u is C2° in the interior of the domain.

7. SHARPNESS OF THE ESTIMATES

In this final section we discuss the sharpness of the estimates in Theorems [1.1

and [L.5

7.1. Sharpness for the interior estimates. Solutions to the elliptic problem are,
in particular, solutions to the parabolic problem. In [RS14bl Proposition 6.1], the
second author and Serra proved that to gain up to C9"2* spatial regularity it is
necessary to assume that the solution is, at least, in C.

Indeed, they construct a function u : R? — R such that, for a € (0,s], € > 0

small, and a certain operator of the form —,
(i) Lu=01in By
(ii) u=01in By \ By

(iii) v € C*¢(R?)

(iv) u ¢ C*"25(By5).

This proves the sharpness of the bounds for Theorem in the spatial part, since
the condition on the a priori regularity on w is sharp.

We next show that the temporal part is also optimal: from a function w that
is 5--Holder in £, we can gain regularity up to 1 + - and not better in general.
This follows from the following lemma, that uses a construction inspired by [CD14],
Counterexample 2.4.1].
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Lemma 7.1. Let s € (0,1), and let a € (0,s]. Then, for any € > 0 small, there
erists a function v satisfying:

(i) O+ (—=A)v =0 in (—1,0) x By
(i) v e CZ ""((—1,0) x R")
(iii) v ¢ C,}Jrg ((=1,0) x Byy2) for any e > 0.
Proof. Consider the solution v to the fractional heat equation

o+ (—A)*v=01in (—1,0) x By

with initial value v(—1,-) = 0 and exterior condition outside B; equal to v,

ot ) = ift < —1 (7.1)
TETE Ve b+ D) e+ 1/40() it > - '
where we fix 6 = & — € > 0, and n(z) is a C*° non-negative function supported in

Bzs \ B3/, and equal to 1 in B3 \ Bs.

On the one hand, v € CZ “"((—1,0) x R"). Indeed, for times in (—1,—1/4),
v = 0 by uniqueness. For times ¢t > —1/4, this is true inside B; by the C*® regularity
up to the boundary, Proposition (I and it is also true outside the ball by the
regularity of the exterior condltlon.

On the other hand, for ¢y > 0 small, then v is at most C;}* in (=1/2,0) x By .
To see this, notice that, for t > —1/4 and in By,

0+ (—A)T = (t+1/4)° (1 +0)eo + (—A)°n).

Note also that (—A)*n < —c in By, for some positive constant ¢, so that we can
choose ¢y > 0 small enough such that v is a subsolution to the fractional heat
equation in (—1,0) x B;. By the comparison principle, v > v in (—1,0) x By, and
also v = 0 in (—1,—1/4) x B; by uniqueness. Thus, d,v is at most C{ inside By s,
and 0 < 7. OJ

7.2. Boundary estimates optimality. The C? regularity up to the boundary for
the solutions to nonlocal parabolic equations is optimal (as it is optimal even for
the fractional Laplacian in the elliptic case).

Regarding the optimality of the bounds for the estimates up to the boundary for
u/d® we expect them to be optimal or almost optimal for general f € L> (even for
the fractional Laplacian) because the regularity cannot exceed the one achieved in
the interior.

For general stable operators we expect this regularity to be optimal even if €2 is a
C* domain and f € C*°. We refer to [RS14bl Proposition 6.2], where it is proven
that for some operator L of the form — and some C*° domain 2, one has
L(d®*) ¢ L>(2). Thus, we do not expect to have C*® regularity up to the boundary
for the quotient u/d®.
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